
GitHub & Quarto - Data Management Tools and Principles

Victor van Pelt

WHU – Otto Beisheim School of Management

June 5, 2024

1 / 18



What is today’s topic?

Data management, analyses, and writing papers can quickly turn into a mess:

Lack of version control Conflicting data sets and code

2 / 18



What is today’s topic?

There is a better way:

1 A good directory structure

2 Repositories and version control (Github)

3 Scientific programming (Quarto)

The main goals of this brown bag:

Exchange “best practices”

I will share a few basic techniques and principles. Inspired, for instance, by:

Code and Data for the Social Sciences

Chicago Booth Internal Lab Manual

Tilburg University internal documents/RM

But let’s make this interactive: Jump in & show-and-tell.

3 / 18

https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
https://github.com/gentzkow/lab-manual/wiki


1. A good directory structure

4 / 18



1. A good directory structure: The main idea

Researchers want to strive toward the following:

Anyone can run the code anywhere and anytime, regardless of location.

Anyone can understand the code instantaneously and effortlessly.

Anyone can update the code on the spot without breaking it (dynamic coding).

How have we been trying to accomplish this?

Follow a structured process in your coding:
E.g., formatting files -> generating variables -> conducting analyses -> generating output.

Leave the raw data untouched: You load it and use it to produce output:
E.g., raw data files -> input files -> process files -> output files.

Use relative paths (e.g., “../1_input/data.csv”) and not direct paths (e.g.,

“C:/user[name]/Documents/research/project_1/input/data.csv”).

The code is deterministic. If randomization is required, specify a seed.

Use plenty of comments to explain what the code is doing.
5 / 18



1. A good directory structure: An example

Main folders:

0_raw: stores raw data, which might not be shared in the online repository (i.e., gitignore file).

1_input: stores input data, typically taken and stored from 0_raw as a different file format.

Input data also does not have to be shared in the online repository (i.e., gitignore file).

2_ process: stores intermediate files for passing it between different code. These process

files also do not have to be shared in the online repository (i.e., gitignore file).

3_output: contains output such as tables and figures. This is typically shared in the online

repository.

Main directory:

Your code: variables.do/R/qmd/py, analyses.do/R/qmd/py, output.do/R/qmd/py, etc.

6 / 18



1. A good directory structure: An example

Other folders:

#_code: rather than in the main directory, you can also store code in this subfolder. This is

typically shared in the online repository.

#_docs: stores the drafts of papers and presentations. This is typically shared in the online

repository.

#_other: stores other files. Ancillary files are typically not shared in the online repository (i.e.,

gitignore file).

#_external: used for maintaining both a private and public, shareable repository at the same

time. Copies of the repository can be stored in this subfolder to be shared publicly

(advanced).

7 / 18



1. A good directory structure: An example

Let’s take a look at how this could (in principle) work:

Download this repository!

8 / 18

file:C:/users/victo/OneDrive/Documents/github%20stuff/data_management_example/.
https://github.com/victorvanpelt/data_management_example


2. Repositories and version control

9 / 18



2. Repositories and version control: The general idea

What is the idea?

Research is a public good: Give others (public) access to our research materials (code, data,

and instruments).

Record changes to files and code over time so we can recall them later (version control).

How do we accomplish this?

Register at an open-source repository service.

Use “commits” to structure your research progress:

Initial commit: created the main directory.

Commit 1: created the do-file and started coding.

Commit 2: …

Use “push” to submit your commits to the online repository.

Use a README.md file to state the project’s title and a brief description of the repository.

10 / 18



2. Repositories and version control: How do I use Github?

Setup:

Register at Github.

Subscribe to Github Education.

Download and install Github Desktop.

“Clone” the “example” repository we just covered.

Create your own repository:

Create a new repository in Github Desktop

Use “commits” to structure your research progress:
Initial commit: created the main directory.

Commit 1: created the do-file and started coding.

Commit 2: …

Click “push” to submit your commits to the online repository (ensure initial push is private).

Use a README.md file to state the project’s title and a brief description.
11 / 18

www.github.com
https://education.github.com/
https://desktop.github.com/
https://github.com/victorvanpelt/data_management_example


2. Repositories and version control: Why should you care?

Journals are increasingly requesting access to your research materials (i.e., code,

instrument, and data).

At the very least, they want to ensure it exists.

At the very most, they will put a researcher on checking every part of your code (e.g., MS)

This trend is growing… For example:

Journal of Accounting Research

Management Science

12 / 18



3. Scientific programming (Quarto)

13 / 18

https://www.quarto.org/


3. Scientific programming (Quarto)

Researchers are facing another challenge:

We use different software and coding languages for

data management, analyses, and writing.

For a decade, there have been efforts to put all

research activities under one umbrella.

Originally: One system for R + Markdown.

Today: Quarto (Python, Jupyter, R, Markdown,

HTML, Office, Stata, LaTeX, etc.)

14 / 18



3. Scientific programming (Quarto): A quick introduction

Setup:

1 Install Quarto from the website: https://quarto.org/docs/get-started/.

2 Choose a coding environment (I recommend VS Code).

3 Install the Quarto VC Code Extension in VC Code.

Usage:

Quarto uses .qmd files. Each qmd file has a research purpose: Check the guide.

Best integration support for Markdown, R, Python, and LaTeX.

However, you can produce output in Office formats (ppp and xdoc) and integrate Stata code.

Download my quarto example here (clone from Github).

15 / 18

https://quarto.org/docs/get-started/
https://quarto.org/docs/get-started/hello/vscode.html
https://marketplace.visualstudio.com/items?itemName=quarto.quarto
https://quarto.org/docs/guide/
https://github.com/victorvanpelt/quarto_example


3. Scientific programming (Quarto): How to integrate Stata?

Use Python engine in the qmd file Use pystata as you would in Jupyter

16 / 18



3. Scientific programming (Quarto): Another example

Download this repository!

17 / 18

file:C:/users/victo/OneDrive/Documents/github%20stuff/quarto_example/.
https://github.com/victorvanpelt/quarto_example


Thank you!

Dr. Victor van Pelt

Assistant Professor of Accounting

Finance and Accounting Group

WHU – Otto Beisheim School of Management

Campus Vallendar, Burgplatz 2, 56179 Vallendar, Germany

Tel.: +49 (0)261 6509 483

Victor.vanPelt@whu.edu

https://www.victorvanpelt.com

18 / 18

mailto:Victor.vanPelt@whu.edu
https://www.victorvanpelt.com

